3.1825 \(\int \frac{(a+\frac{b}{x^2})^2}{x^2} \, dx\)

Optimal. Leaf size=28 \[ -\frac{a^2}{x}-\frac{2 a b}{3 x^3}-\frac{b^2}{5 x^5} \]

[Out]

-b^2/(5*x^5) - (2*a*b)/(3*x^3) - a^2/x

________________________________________________________________________________________

Rubi [A]  time = 0.0121368, antiderivative size = 28, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {263, 270} \[ -\frac{a^2}{x}-\frac{2 a b}{3 x^3}-\frac{b^2}{5 x^5} \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x^2)^2/x^2,x]

[Out]

-b^2/(5*x^5) - (2*a*b)/(3*x^3) - a^2/x

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+\frac{b}{x^2}\right )^2}{x^2} \, dx &=\int \frac{\left (b+a x^2\right )^2}{x^6} \, dx\\ &=\int \left (\frac{b^2}{x^6}+\frac{2 a b}{x^4}+\frac{a^2}{x^2}\right ) \, dx\\ &=-\frac{b^2}{5 x^5}-\frac{2 a b}{3 x^3}-\frac{a^2}{x}\\ \end{align*}

Mathematica [A]  time = 0.0007557, size = 28, normalized size = 1. \[ -\frac{a^2}{x}-\frac{2 a b}{3 x^3}-\frac{b^2}{5 x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x^2)^2/x^2,x]

[Out]

-b^2/(5*x^5) - (2*a*b)/(3*x^3) - a^2/x

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 25, normalized size = 0.9 \begin{align*} -{\frac{{b}^{2}}{5\,{x}^{5}}}-{\frac{2\,ab}{3\,{x}^{3}}}-{\frac{{a}^{2}}{x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+1/x^2*b)^2/x^2,x)

[Out]

-1/5*b^2/x^5-2/3*a*b/x^3-a^2/x

________________________________________________________________________________________

Maxima [A]  time = 1.00412, size = 35, normalized size = 1.25 \begin{align*} -\frac{15 \, a^{2} x^{4} + 10 \, a b x^{2} + 3 \, b^{2}}{15 \, x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^2/x^2,x, algorithm="maxima")

[Out]

-1/15*(15*a^2*x^4 + 10*a*b*x^2 + 3*b^2)/x^5

________________________________________________________________________________________

Fricas [A]  time = 1.46131, size = 61, normalized size = 2.18 \begin{align*} -\frac{15 \, a^{2} x^{4} + 10 \, a b x^{2} + 3 \, b^{2}}{15 \, x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^2/x^2,x, algorithm="fricas")

[Out]

-1/15*(15*a^2*x^4 + 10*a*b*x^2 + 3*b^2)/x^5

________________________________________________________________________________________

Sympy [A]  time = 0.31196, size = 27, normalized size = 0.96 \begin{align*} - \frac{15 a^{2} x^{4} + 10 a b x^{2} + 3 b^{2}}{15 x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**2)**2/x**2,x)

[Out]

-(15*a**2*x**4 + 10*a*b*x**2 + 3*b**2)/(15*x**5)

________________________________________________________________________________________

Giac [A]  time = 1.14852, size = 35, normalized size = 1.25 \begin{align*} -\frac{15 \, a^{2} x^{4} + 10 \, a b x^{2} + 3 \, b^{2}}{15 \, x^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^2/x^2,x, algorithm="giac")

[Out]

-1/15*(15*a^2*x^4 + 10*a*b*x^2 + 3*b^2)/x^5